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Abstract. We study the decay behaviour of a nearest-neighbour random walker which gets 
trapped at the first encounter of a sink. As underlying structures we consider fractals 
(Sierpinski gaskets) and regular lattices and establish the scaling behaviour of the decay 
law with respect to x = -na” In( I - p ) ,  where n is the number of steps, p the sink concentra- 
tion and d‘ the spectral dimension. The decay scales well for x large. For small x, scaling 
is reasonable for the gaskets and the linear chain, and rather poor for the square lattice. 

Recently, the topic of random walks on random media is enjoying growing interest, 
as witnessed by the large body of related research reviewed for instance in Weiss and 
Rubin (1983) and Hughes and Ninham (1983). Many stochastically disordered struc- 
tures, like percolation clusters at criticality (Alexander and Orbach 1982), linear and 
branched polymers (Havlin and Ben-Avraham 1982), aggregates constructed by 
diffusion-limited growth (Witten and Sander 1983, Vicsek 1983), epoxy resins (Alexan- 
der et a1 1983) and porous surfaces (Avnir et a1 1983), are dilatationally invariant. These 
structures, while lacking translational symmetry, are self-similar under geometrical 
(length) scaling, and are thus fractals in the nomenclature of Mandelbrot (1977, 1982). 
Fractals, on the other hand, need not be stochastic: a well known example is the 
deterministically built Sierpinski gaskets (Sierpinski 1974, Urysohn 1927). 

In this letter we address the problem of trapping of a random walker by randomly 
distributed sihks (traps) on fractals (Sierpinski gaskets). Applications of this problem 
are the energy transfer in disordered media (Zumofen and Blumen 1982, Blumen et 
a1 1983, de Gennes 1983, Evesque 1983, Klafter et a1 1984a, b) and also mathematically 
related problems such as the dielectric relaxation by diffusion of defects (Shlesinger 
and Montroll 1984) and the partition function for self-attractive polymers (Stanley et 
a1 1983). Here we investigate both analytically and numerically the dependence on 
time and on the sink concentration of the decay law. We extend our calculations over 
many orders of magnitude and find that below the maximal dimension of two the 
decay law scales with time and with the sink concentration. The marginal dimension 
is related to the compact exploration, a concept stressed by de Gennes (1983). 

As in our previous investigations (Zumofen and Blumen 1982, Blumen et a1 1983, 
Klafter et a1 1984a, b) we study trapping in the framework of the distribution R,  of 
distinct sites visited in n steps on the trap-free lattice. The quantity R,  is a stochastic 
variable, which depends on the particular realisation of the random walk. In the case 
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of equal microscopic transfer rates between the sites and if the walker is eliminated 
at its first sink encounter, the decay laws due to trapping are 

(1 a )  

( lb)  

4, = (( 1 -p)"m) = (exp(-AR,)) 

O, = ((1 -PI".-') = e'&,, 

or 

depending whether one allows the origin of the walk also to be a sink, (1 a) ,  or excludes 
this possibility, (1 b) .  In these equations the average is to be taken over all random-walk 
realisations, and we set A = -ln(l - p ) .  Former investigations have focused on O,, 
whereas &,, corresponds to a homogeneous initial condition (Klafter and Silbey 1983). 

The right-hand side of ( 1  a )  now allows a cumulant expansion (Zumofen and Blumen 
1982) 

where the Kj,, are the cumulants of R,. Including only a finite number of terms in (2) 
leads to approximations whose quality, however, depends both on the magnitude of 
A and R, and also on the properties of the distribution R,, i.e. basically on the 
dimension of the underlying lattice. Thus, the cumulant expansion works better at 
small A (i.e. for small trap concentrations), for small values of R, (i.e. at shorter times) 
and for higher dimensions. 

Let us now consider the cumulant expansion (2). We remark that for regular lattices 
the asymptotic behaviour with n of the first cumulants S ,  = Kl,,  = (R,) and a: = K2,, = 
(R:) - (R,)' is known (see Weiss and Rubin 1983): 

(3a) 

(3 b) 

(3 c) 

2 d = 1: 

d = 2: 

d = 3 :  S , = c l n +  . . . ,  

S,  = c ln ' '2+ .  . . , U, = c2n +. . . , 
S,  = cln/ln n +. . . , a: = c2n2/ln4 n +. . . , 

a: = c,n ln n +. . . . 
In (3), cI and c2 are constants which depend on the lattice type. In former works 
(Blumen and Zumofen 1982 and citations therein) we have analysed these expansions 
and have established additional terms to (3) for different lattice types. On the other 
hand, for Sierpinski gaskets one finds (Blumen et a1 1983, Angles d'Auriac et a1 1983) 

(4) 
In (4), d' is the spectral dimension of a gasket strictly embedded in a d-dimensional 
Euclidean space, d' = 2 In(d + I)/ln(d +3) (Alexander and Orbach 1982, Rammal and 
Toulouse 1983); this dimension is distinct from the Hausdodl dimension 6 =  
ln(d + l)/ln 2 of the gasket (Mandelbrot 1977, 1982), which measures the density of 
lattice sites. Equation (4) is reminiscent of the regular one-dimensional case (or, 
equivalently, of the d = d ' =  1 Sierpinski gasket), for which all cumulants obey (see 
Weiss and Rubin 1983) 

d S,  = cI n d / 2  + . . . , aZ,=c2n +. . . .  

Kj. , - cj nJ/ ( 5 )  

with cj being constants. For the Sierpinski gaskets d' always lies between 1 and 2, and 
(4) is a natural extension of ( 5 )  to this region. We note that in two dimensions, because 
of the presence of logarithmic terms in (3b), the extension (4) does not hold. Afortiori, 
of course (4) does not hold in three dimensions. 
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Inserting now (4) into the cumulant expansion (2) leads to 

@, =exp[-A(&- 1)+A202,/2-. . . ] = e ~ p [ - c , A n ~ ’ ~ + ( c ~ / 2 ) A ~ n ~ - .  . .]. (6) 

We thus find @,-exp[-f(x)], where the function f(x) stands for the (possibly 
asymptotic) series X j  cj(-x)’/j! and where we set x =  And/’= -nd/’ ln(1 - p ) .  Note, 
however, that the dependence of @,, on x cannot be expected to hold strictly, since in 
the derivation forms valid in the moderate- and long-time limit, (3)-(5), were inserted 
into (2), which is a short-times expansion. That this result for fractals still provides a 
good qualitative picture is due to the fact that the domains of validity of (4) are reached 
very quickly (n 2 10) (Blumen er a1 1983). The regions in which the decay law scales 
with x will become evident from the numerical results for On, presented below. 

Turning now to the long-time limit, we notice that for the gaskets one has asymptoti- 
cally for n large (Klafter er a1 1984a,b) 

1 = exp[-f(x)I (7) @,, == , X ~ ( - C A ~ / ( ~ + ~ )  n d / ( d + 2 )  

where again x = And/2  and now f(x) = CX’/(’+~), where C is a constant. As discussed 
in the derivation of (7), this expression is a generalisation of the long-time survival 
probability in Euclidean spaces (Balagurov and Vaks 1973, Donsker and Varadhan 
1975) and reduces to the Eudidean result by replacing d’ by d. For Sierpinski gaskets 
the derivation of (7) is facilitated by using the concept of compact exploration, as 
stressed by de Gennes (1983). 

Extending now (6) and (7) to the whole x-range x =  And/* = -ndI2 ln(1 - p ) ,  one 
assumes for the decay law a general scaling form 

@ n  = ex~[-f(x) l  

with a universal function f(x), which behaves in the small and large x limits as 

Next we will compare this scaling assumption with decay laws @,, followed over 
20 orders of magnitude over a very large time and trap-concentration domain. As we 
proceed to show, the scaling assumption performs well for Sierpinski gaskets ( d  < 2), 
and is not well obeyed for regular ( d  3 2) lattices. 

In order to obtain the decay law @,, we followed the method of our previous works 
(Zumofen and Blumen 1982, Blumen et a1 1983, Klafter et a1 1984a, b). Thus the 
distribution of R,-values was determined numerically for random walkers on trapzfree 
structures. The decay was then computed as in (l), by averaging exp(-AR,) over the 
simulated walks. This method allows, due to the analytical pre-averaging over the sink 
positions, an increase in accuracy and a considerable decrease of numerical effort. 
For the determination of R,, 50 000 realisations of walks were used. Note that for a 
mean number S,  of sites visited this corresponds to some 5 x IO4  x 2’. walks on lattices 
with traps, i.e. to a very large number. As random-number generator we used the 
procedure RNl of the ETH Computer Center, whose performance was checked in 
former works (Zumofen and Blumen 1982, Blumen and Zumofen 1982) through 
comparison with known analytical results and with other Fortran random-number 
generators. 

We start our analysis with the short- and moderately long-decay regime and plot 
in figure 1 a,, for three Sierpinski gaskets. For the embedding Euclidean spaces we 
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Figure 1. Decay law @,, due to randomly distributed traps on Sierpinski gaskets. The 
gaskets are embedded in two-, three--and six-dimensional Euclidean lattices and have 
(from above) the spectral dimensions d = 1.365, 1.547 and 1.771, respectively. The decay 
is plotted logarithmically and for clarity the curves are shifted by a factor of ten. The 
scaling form is x = A n a l 2  = - n d I 2  In(1 - p ) ,  where p is the sink concentration which varies 
from I to 50%. 

take d = 2, 3 and 6, so that the gaskets have the spectral dimensions 2 = 1.365, 1.547 
and 1.771. For sink concentrations between 1% and 50% we follow the decay over 
the first two to three orders- of magnitude. Since the goal is to check the behaviour 
On = exp[-f(x)] for x = And'*, we plot @,, logarithmically over x. To facilitate the 
reference, in figure 1 the On which correspond to different values of d are shifted 
with respect to each other by a factor of ten. 

As is evident by inspection, the overall shape of the decay is indeed universal. 
Plotting On as a function of And/*  = In(1 - p ) ,  instead of letting @,, depend only 
parametrically on p (Blumen et a1 1983, Wafter et a1 1984a,b), renders very similar 
the decays which hold for different sink concentrations. Notice also the parallelity of 
the decays for different spectral dimensions d: if we had not shifted the @,,-bundles, 
they would be hardly distinguishable. Summarising, we find for all p and d' considered 
that for small and moderate x the decays 

However, as was also expected from the discussion above, in this x range, scaling 
is not quantitative. For instance, for d' = 1.365 the difference at On = between the 
p = 0.01 and the p = 0.5 curves is a factor of 1.5. One has also examples for better 
scaling behaviour, such as the @,-bundle for 2 = 1.547. Here the decay scales better, 
due to an interplay between higher-order terms in the asymptotic forms for S,, and 
a:, equations (4). A feeling for this aspect may be gained from figure 1 by noticing 
that for d = 1.365 the scaled decay law for p = 0.5 lies above the one for p = 0.01, 

scale quite well. 
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whereas for d = 1.771 the opeosite is true. In fact this trend extrapolates to random 
walks on linear chains (d = d = 1): here the decay forms a,, are known an?Iytically 
(Movaghar er a1 1982, Weiss and Rubin 1983) and behave similarly to the d = 1.365 
case (Wafter er a1 1984a,b). Plotting &,, instead of @,, renders even bette? the scaling 
behaviour in d = 1 (Anlauf 1984), but worsens the agreement for larger d values. 

We now turn to the large-x regime (long times), where for all dimensions scaling 
behaviour is obeyed in the asymptotic limit. In figure 2 we display for the three 

Figure 2. Longtime behaviour of the decay law On on Sierpinski gaskets. The gaskets 
used are as in figure I and the sink concentrations p are V, I ;  +,3; 0, 5;  0, IO; A,  30 
and A,  50%. The scales used, -In(-In O,,) against In(nA2Id) = ( 2 / d )  In x, are discussed in 
the text. 

Sierpinski gaskets the decay law over 20 orders of magnitude. Since the decay goes 
asymptotically as exp(-Cx"), we plot -In(-ln a,,) against ( 2 / d )  In x so that in these 
scales the asymptotic form is a straight line. The factor 2 /d  is introduced for con- 
venience only: plotting the decay as a function of h2/'n = x2/' instead of And/' = x 
allows us to distinguish the @,, corresponding to different 2. As is apparent from figure 
2, the long-time behaviour scales for all concentrations (1 % to 50%) considered; this 
fact establishes the universal behaviour of @,, in this x range. On the other hand, even 
for < lo-': the decay laws do not follow straight lines. Thus, as remarked 
by us earlier for the d = 1.365 gasket (Klafter et al 1984a,b), the domain of validity of 
the asymptotic law, equation'(7), is reached very slowly, and may even be inaccessible 
to experimental observation. We thus find that quantitative scaling sets in long before 
the domain of validity of (7) is reached. 

In order to present a counterexample to smooth scaling behaviour, we show in 
figure 3 the decay law @,, for a square lattice (d = 2). Here we follow again On over 
20 orders of magnitude, and plot -In(-In @") against In x. Direct inspection of the 
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Figure 3. Long-time behaviour of the decay law a,, on a square lattice ( d  = 2), for sink 
concentrations V, 0.5; +, 1 ; 0 , 3 ;  0, 5 ;  A, 10 and A, 30%. The scales correspond to those 
of figure 2. 

figure shows that in two dimensions scaling obtains only asymptotically and that in 
the intermediate range (10 < An < 30) for different trap concentrations the scaled decay 
law varies by many orders of magnitude. Thus d = 2 turns out to be a marginal 
random-walk dimensionality also with respect to scaling. We note that below d = 2,  
say on Sierpinski gaskets, the exploration is compact in the sense of de Gennes (1983), 
since already visited sites have a high revisitation probability by the walkers. Thus for 
a given compact volume V around the origin of the walk most points inside V are 
visited before a new site outside the volume is explored. As discussed by us (Klafter 
et a1 1984a, b), the probability for such volumes to be trap free and the average number 
of steps needed for their exploration are connected. Thus scaling and compactness 
appear as different aspects of an underlying relation between sink density and temporal 
behaviour. 

In this letter we have studied for several fractal lattices both analytically and 
numerically the decay law due to trapping. From the analytical forms a universal 
scaling law was inferred, which combines the trap concentration, the number of steps 
(i.e. time) and the spectral dimension of the fractal. The numerical results show the 
domain of validity and the limitations of this scaling law. For all structures investigated, 
the law is quantitatively obeyed in the long-time (large number of steps) limit. Devi- 
ations appear in the short- and moderately long-decay regime, where scaling is reason- 
able for the Sierpinski gaskets. For comparison we have also reported results for 
regular structures.- With respect to scaling, the linear chain behaves similarly to the 
low-dimensional d = 1.365 gasket, whereas for short and moderately long decays, 
scaling is poor for the square lattice. Sierpinski gaskets bridge the gap between d = I 
and d = 2 :  the optimal (fractional) dimension for scaling lies around d' = 1.5 for On 
and around d' = 1 for 6,,, whereas the marginal dimension is d = 2 .  
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